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We review and further develop a mathematical framework for non-equilibrium
quantum statistical mechanics recently proposed in refs. 1–7. In the algebraic
formalism of quantum statistical mechanics we introduce notions of non-equi-
librium steady states, entropy production and heat fluxes, and study their
properties. Our basic paradigm is a model of a small (finite) quantum system
coupled to several independent thermal reservoirs. We exhibit examples of such
systems which have strictly positive entropy production.
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1. INTRODUCTION

The properties of a physical system out of thermal equilibrium are usually
described in term of phenomenological concepts like steady state, entropy
production and heat flux. These notions are related by the fundamental
laws of thermodynamics. As an illustration, consider a model describing a
small system S coupled to two infinite heat reservoirs R1, R2 which are at
temperature T1, T2 (see Fig. 1).

Under normal conditions, one expects that the combined system will
settle into a steady state in which there is a constant flow of heat and
entropy from the hotter to the colder reservoir across the system S. Let Fk
be the heat current flowing from reservoir Rk into the small system S, and



Fig. 1. A system coupled to two heat reservoirs.

Ep the entropy production rate in S. In the steady state, the fundamental
laws of thermodynamics read:

F1+F2=0,

F1

T1
+

F2

T2
=−Ep [ 0.

(1)

The first relation expresses energy conservation (the first law of thermo-
dynamics). The second asserts that the heat flows from the hotter to the
colder reservoir and that the entropy of S is not decreasing (the second
law of thermodynamics).

Our goal is to give a precise mathematical meaning to the notions
of non-equilibrium steady state, entropy production and heat flux, study
their properties and prove Relations (1) from first principles. We will also
exhibit examples of combined systems S+R1+R2 which have strictly
positive entropy production and hence non-trivial thermodynamics.

We will work in the mathematical framework of algebraic quantum
statistical mechanics which appears to be particularly well-suited to the
study of general structural properties of non-equilibrium steady states. The
basic notions of this algebraic framework are briefly introduced in Section 2.
The reader is referred to the monographs of refs. 8–12 for more detailed
expositions. In Section 3, we define non-equilibrium steady states and
discuss their basic structural properties. Section 4 is devoted to the notion
of entropy production. Finally, a simple class of models with strictly posi-
tive entropy production is described in Section 5.

This review is based on a series of recent papers. (1–7) These works rely
on a large body of knowledge previously developed by many authors in
various areas of mathematical physics: Equilibrium statistical mechanics,
quantum dynamical systems, quantum Markovian processes, van Hove
limit, linear response theory, etc. Even though we have tried to provide the
reader with the most relevant references to these earlier works, we do not
claim completeness in this respect, and refer the reader to refs. 8, 9, and 13
for an extensive list of references.
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2. THE FRAMEWORK

In its algebraic formulation, the quantum mechanics of a physical
system is described by a Cg or a Wg-dynamical system. To avoid techni-
calities we will consider in this review only Cg-systems. The non-equilib-
rium statistical mechanics ofWg-systems will be discussed elsewhere.
Cg-dynamical systems are introduced in Sections 2.1 and 2.2 later. In

Section 2.3 we describe some examples of such systems.

2.1. C g-Dynamical Systems

A Cg-dynamical system is a pair (O, y), where O is a Cg-algebra and
y t a strongly continuous group of f-automorphisms of O (that is, the map
tW y t(A) is norm-continuous for each A ¥ O). We assume that O has an
identity 1. The elements of O describe observables of the physical system
under consideration and the group y specifies their time evolution. An
example of a Cg-algebra is B(H), the algebra of all bounded operators
on a Hilbert space H, equipped with the operator norm topology. Any
Cg-algebra is isomorphic to a subalgebra of B(H) for some Hilbert space H.

A state of the system is described by a positive linear functional w ¥ Og

satisfying w(1)=1. The number w(y t(A)) is the expected value of the
observable A at time t, assuming that the system was initially in the state w.
The set E(O) of all states on O is a convex, weak-f compact subset of the
dual Banach space Og.

A state w ¥ E(O) is called y-invariant, or steady state, if w p y t=w for
all t. A Cg-dynamical system has at least one (and typically many) steady
states. We call quantum dynamical system a triple (O, y, w), where w is a
y-invariant state.

A quantum dynamical system (O, y, w) is called ergodic if

lim
TQ.

1
2T

F
T

−T
w(Bgy t(A) B) dt=w(A) w(BgB),

for all A, B ¥ O. It is said to have the property of return to equilibrium if

lim
|t|Q.

w(Bgy t(A) B)=w(A) w(BgB).

Thermal equilibrium states are characterized by the KMS condition.
Let b > 0 be the inverse temperature. A state w is (y, b)-KMS if, for all
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A, B ¥ O, there is a function FA, B analytic inside the strip {z | 0 < Im z < b},
bounded and continuous on its closure, and satisfying the KMS boundary
conditions

FA, B(t)=w(Ay t(B)), FA, B(t+ib)=w(y t(B) A),

for t ¥ R. A KMS state is y-invariant. The quantum dynamical system
(O, y, w), where w is a (y, b)-KMS state, describes a physical system in
thermal equilibrium at temperature 1/b.

Note that a (y, b)-KMS state is also a bŒ-KMS state for the dynamics
defined by y tb/bŒ. Even though, in most systems, the physical temperature
is a non-negative parameter, it is mathematically convenient to define KMS
state for all b ¥ R 2 {±.}. The case b=0 corresponds to infinite tem-
perature and (y, 0)-KMS states (y-invariant traces) are sometimes called
chaotic states. Let d be the generator of y. The state w is called (y, ±.)-
KMS state if ±iw(Agd(A)) \ 0 for all A ¥D(d). (y, b)-KMS states at
values b=+. and b=−. are called respectively ground states and
ceiling states.

Let w be a state on the Cg-algebra O. We denote by (Hw, pw, Ww) the
GNS-representation of O associated to w. An injective representation pw
is called faithful. A state g ¥ E(O) is called w-normal if there is a density
matrix r on Hw such that g( · )=Tr(rpw( · )). The set Nw of all w-normal
states is a norm closed convex subset of E(O). Nw is sometimes called the
folium of w. Any g ¥Nw has a unique normal extension to the enveloping
von Neumann algebra Mw=pw(O)'. The state w is called factor state (or
primary state) if its enveloping von Neumann algebra is a factor i.e., if its
center Mw 5M −

w consists of multiples of the identity.
The effectiveness of the algebraic formalism of quantum statistical

mechanics is largely due to Tomita-Takesaki modular theory of von
Neumann algebras. We assume that the reader is familiar with the basic
results of this theory as discussed, for example, in refs. 8–10 and 13. For
notational purposes we recall some well-known facts.

The state w is called modular if Ww is a separating vector for Mw i.e.,
if w extends to a faithful normal state on Mw. Any KMS state at inverse
temperature b ¥ R is modular. Assume that w is a modular state on O and
denote by Dw=eLw, J and P the modular operator, the modular conjuga-
tion and the natural cone associated to the pair (Mw, Ww). The operator
Lw is self-adjoint while J is an anti-unitary involution on Hw. These
operators are characterized by the relation

JeLw/2AWw=AgWw, (2)
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which holds for any A ¥Mw. The natural cone P is the norm closure of the
set

{AJAWw | A ¥Mw}.

An important property of the natural cone is that for every state g ¥Nw
there is a unique vector Wg ¥P such that g( · )=(Wg, pw( · ) Wg). Moreover,
if y is a Cg-dynamics on O (not necessarily leaving the state w invariant),
then there is a unique self-adjoint operator L on Hw such that, for all t,

pw(y t(A))=e itLpw(A) e−itL,

e−itLP …P.
(3)

The operator L is called the standard Liouvillean. The first formula in (3)
allows us to extend y to all of Mw.

A state g ¥Nw is y-invariant iff LWg=0. Thus, the study of w-normal,
y-invariant states reduces to the study of Ker L. This is the first link
between quantum statistical mechanics and modular theory. The second
one is Takesaki’s theorem: w is a (y, b)-KMS state iff

Lw=−bL. (4)

The third link is quantum Koopmanism: The spectral properties of the
standard Liouvillean L encode the ergodic properties of the quantum
dynamical system (O, y, w) in complete analogy with Koopman’s lemma
of classical ergodic theory. (14, 15) For example, if the state w is modular,
then (O, y, w) is ergodic iff zero is a simple eigenvalue of L. Moreover, the
system returns to equilibrium if the singular spectrum of L reduces to this
simple eigenvalue.

2.2. Local Perturbations

Let (O, y, w) be a quantum dynamical system describing a physical
system in a steady state. Our guiding physical principle is that the response
of the system to local perturbations will reveal its basic thermodynamical
properties. We now discuss the mathematical formalism needed to deal
with local perturbations.

Let d be the generator of the dynamical group y t. The operator d is a
f-derivation: Its domain D(d) is a f-subalgebra of O and for A, B ¥D(d),

d(A)g=d(Ag), d(AB)=d(A)B+Ad(B).
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Let V be a local perturbation, i.e., V=Vg ¥ O. The generator of the
perturbed dynamics is dV( · )=d( · )+i[V, · ]. The operator dV is also a
f-derivation and D(dV)=D(d). The perturbed dynamics is given by the
automorphisms y tV=e tdV,

y tV(A)=y t(A)+C
n \ 1
in F

t

0
dt1 F

t1

0
dt2 · · ·F

tn−1

0
dtn[y tn(V), [· · ·[y t1(V), y t(A)]]].

The pair (O, yV) is a Cg-dynamical system. If w is modular and L is the
standard Liouvillean associated to y, then the standard Liouvillean asso-
ciated to yV is the self-adjoint operator given by

LV=L+V−JVJ,

with domain D(LV)=D(L).

2.3. Examples

2.3.1. Finite Quantum Systems

Let K 4 CN be a finite dimensional Hilbert space and O=B(K).
A Cg-dynamics y is determined by a self-adjoint operator (Hamiltonian)
H on K

y t(A)=e itHAe−itH.

The dynamics associated with the local perturbation V is

y tV(A)=e it(H+V)Ae−it(H+V).

A states w ¥ E(O) is determined by a density matrix on K which we denote
by the same letter, so w(A)=Tr(wA). The state w is faithful iff w > 0 and
it is y-invariant iff [w, H]=0.

For any b ¥ R the density matrix

e−bH/Tr(e−bH),

defines the unique (y, b)-KMS state on O. On the other hand, if w is a
faithful state, then for any b ] 0 there exists a unique Cg-dynamics sw, b
such that w is a (sw, b, b)-KMS state. This dynamics is generated by the
Hamiltonian −b−1 log w.

The GNS-representation (Hw, pw, Ww) of O associated to the state
w can be explicitly constructed as follows. Let 0 [ l1 [ · · · [ lN be the
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eigenvalues of w counted with multiplicities and denote by ki the corre-
sponding eigenvectors. Fix a complex conjugation k W k̄ on K, then one
can take

Hw=K éK,

pw(A)=A é 1,

Ww=C
N

k=1
l1/2k kk é k̄k.

The standard Liouvillean corresponding to the dynamics y generated by the
HamiltonianH is

L=H é 1−1 é H̄,

where, by definition, H̄k=Hk̄. Finally, let us describe the modular struc-
ture associated to a faithful state w. The modular conjugation acts as
J(k é f)=f̄ é k̄, and the modular operator is given by

Lw=log Dw=log w é 1−1 é log w̄.

Isolated finite quantum systems have no interesting thermodynamics.
However, models where a finite quantum system is coupled to infinite
thermal reservoirs are one of the basic paradigms of quantum statistical
mechanics.

2.3.2. Free Fermi Gases

Let H be the Hilbert space of a single fermion and h its Hamiltonian.
For example, a free non-relativistic spinless electron of mass m is described
by the Hilbert space H=L2(R3, dp) and its Hamiltonian h is the operator
of multiplication by p2/2m. Another example is given by a spinless lattice
fermion with Hilbert space H=a2(Zd) and Hamiltonian h=−D, the usual
discrete Laplacian on Zd.

Let C−(H) be the anti-symmetric (fermionic) Fock space over H. For
f ¥H, denote by a(f) and ag(f) the annihilation and creation operators
on C−(H). They are bounded operators satisfying ||a(f)||=||ag(f)||=||f||.
As usual, a# stands for either a or ag. Let O be the Cg-algebra generated by
{a#(f) | f ¥H}. The map

y t(a#(f))=a#(e ithf),

extends to a Cg-dynamics on O which can be explicitly written as

y t(A)=e itHAe−itH,
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where H=dC(h). The Cg-dynamical system (O, y) describes a free Fermi
gas.

One often deals with the even subalgebra Oe, the Cg-algebra generated
by

{a#(f1) · · · a#(f2n) | n=0, 1,...; f1,..., f2n ¥H}.

The pair (Oe, y) is also a Cg-dynamical system.
A self-adjoint operator T on H, such that 0 [ T [ 1, determines a

state w ¥ E(O) by

w(ag(f1) · · · ag(fn) a(g1) · · · a(gm))=dm, n det{(gi, Tfj)}.

This, so called quasi-free gauge invariant state, is completely determined by
its two-point function

w(ag(f) a(g))=(g, Tf). (5)

A quasi-free gauge invariant states w is y-invariant iff for all t, e ithTe−ith

=T. In particular, the quasi-free gauge invariant state determined by
T=F(h) describes a free Fermi gas with energy density per unit volume
F(E). For any b ¥ R, the quasi-free gauge invariant state determined by
T=(1+ebh)−1 is the unique (y, b)-KMS state on O.

The GNS-representation and the associated modular structure of the
quasi-free gauge invariant state w determined by T can be explicitly com-
puted (see ref. 16). Let N be the number operator and W the Fock vacuum
on C−(H). Fix a complex conjugation on H and extend it to a complex
conjugation on C−(H). Set

Hw=C−(H) é C−(H),

Ww=W é W,

pw(a(f))=a((1−T)1/2 f) é 1+(−1)N é ag(T̄1/2f̄).

The triple (Hw, pw, Ww) is the GNS-representation of the algebra O asso-
ciated to w. The modular conjugation acts as J(F é Y)=UȲ é UF̄,
where U=(−1)N(N−1)/2. The modular operator is

Lw=log Dw=dC(S) é 1−1 é dC(S̄),

where S=log T(1−T)−1. The corresponding Liouvillean is given by

L=dC(h) é 1−1 é dC(h̄).
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A quasi-free gauge invariant state is primary. It is modular iff Ker T=
Ker(1−T)={0}.

From the above discussion it follows easily that, if w is a quasi-free
gauge invariant and y-invariant state, then the quantum dynamical system
(O, y, w) is ergodic iff h has no eigenvalues. Moreover, if the spectrum of h
is purely absolutely continuous, then this system returns to equilibrium.

2.3.3. Interacting Lattice Fermi Gases

Consider the Cg-dynamical system (O, y) describing the free lattice
Fermi gas introduced in the previous subsection. For x ¥ Zd, we set
a#(x)=a#(dx) and, to any finite subset X … Zd, we associate the local
algebra OX generated by {a#(x) | x ¥X}. The algebra O is quasi-local with
respect to the net {OX}, in particular O is the norm closure of 1X OX.

The fermions interact through a real valued pair potential v ¥ a1(Zd).
For any finite subset X … Zd, the local perturbation

VX= C
x, y ¥X

v(x−y) ag(x) ag(y) a(y) a(x),

induces a dynamics y tX on O. Moreover, there exists a dynamics yv on O

such that, for any A ¥1X OX and for any increasing sequence of finite
subsets L … Zd which eventually contains any finite subset of Zd, one has

y tv(A)= lim
L ‘ Z

d
y tL(A).

The Cg-dynamical system (O, yv) describes an interacting Fermi gas on the
lattice Zd. This important system is little understood (see however ref. 17).

2.3.4. Lattice Spin Systems

Let K be a finite dimensional Hilbert space and, for each x ¥ Zd, let
Kx be a copy of K. To a finite domain L … Zd we associate the Hilbert
space

HL=ë
x ¥ L

Hx,

and the corresponding Cg-algebra

OL=B(HL).

If L1 … L2, then the injection AW A é 1HL2 0L1
allows us to identify OL1 with

a subalgebra of OL2 . Let O denote the Cg-algebra obtained by completing
1L OL. We can identify the local algebras OL with subalgebras of O.
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The algebra O describes observables of the infinite spin system, the
subalgebra OL containing the observables of the spins inside the domain L.

An interaction is a function F from the finite subsets X … Zd into self-
adjoint elements of O such that F(X) ¥ OX. The Hamiltonian

H(L)= C
X … L

F(X),

of a finite domain L induces a dynamics

y tL(A)=e itH(L)Ae−itH(L),

on O.
Let us denote by |X| the number of points in X. If the interaction

satisfies

sup
x ¥ Z

d
C
X ¦ x
||F(X)|| e r |X| <., (6)

for some r > 0, then the limit

y t(A)= lim
L ‘ Z

d
y tL(A),

exists for any A ¥1L OL. Moreover, y extends by continuity to a dynamics
on O. The pair (O, y) is the Cg-dynamical system describing an infinite
quantum spin system.

Whenever condition (6) holds, there exist at least one (and possibly
many) (y, b)-KMS states on O for any b ¥ R. Such states are constructed
as thermodynamic limits of local KMS states defined on OL. Under some
additional regularity conditions on the interaction F the KMS state is
unique for small enough b.

We refer the reader to refs. 9, 11, 18, and 19 for detailed information
on the kinematical structure and equilibrium thermodynamics of quantum
spin systems, and to refs. 4–7 for their non-equilibrium statistical mechan-
ics. The dynamical aspects of quantum spin systems are comparatively little
studied. To our knowledge the only well-understood case is the one-
dimensional XY model, see ref. 20 and 21.

3. NON-EQUILIBRIUM STEADY STATES

In Section 3.1, we define non-equilibrium steady states (NESS) and
describe their basic structural properties. Stability properties of quantum
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dynamical systems are discussed in Section 3.2. Finally, in Section 3.3, we
review two approaches to the study of NESS.

3.1. Definition and Basic Properties of NESS

Let (O, y, w) be a quantum dynamical system and V ¥ O a local per-
turbation. The non-equilibrium steady states (NESS) of the locally per-
turbed system (O, yV) are the weak-f limit points, as TQ+., of the states

wTV —
1
T

F
T

0
w p y tV dt. (7)

In other words, w+V is a NESS iff there is a sequence Tn Q+. such that,
for all A ¥ O, one has

w+V (A)=lim
n

wTnV (A).

The set S+V (w) of NESS is a non-empty weak-f compact subset of E(O)
whose elements are yV-invariant.

The set S−
V (w) is defined analogously, by taking TQ −. in Eq. (7).

Although states in S−
V (w) are non-physical, they are both technically and

conceptually useful.
Obviously, the y-invariance of w plays no role in the above definitions,

and we can define the NESS and the sets S ±
V (g) for any initial state

g ¥ E(O).

Remark. There is a fair amount of arbitrariness in the above defini-
tion. The ergodic mean in Eq. (7) can be replaced by another averaging
procedure. Without further assumptions on the ergodic properties of the
system, the resulting set of NESS will generally not coincide with S+V (g).
However, most results in this section are either independent of our specific
choice of averaging, or can be easily adapted to other averagings. For
technical reasons, related to the use of spectral analysis (see ref. 2), a par-
ticularly useful alternative is Abelian averaging. We denote by S ±

V, Ab(g) the
set of weak-f limit points of the state

E F
.

0
e−Etg p y ±tV dt, (8)

as E a 0.
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3.1.1. Dependence on the Initial State

Clearly S+V (g) describes the set of steady states that can be reached
starting from g, and thus depends on the particular choice of the initial
state g. However, we expect that sufficiently similar initial states should be
driven towards the same set of asymptotic states. Indeed, under some mild
regularity assumption, S+V (g) does not depend on the choice of g as long as
it remains in the folium Nw. The following result will be proved in ref. 3.

Theorem 3.1. Let w be a factor state and assume that, for all
g ¥Nw and A, B ¥ O,

lim
TQ ±.

1
T

F
T

0
g([y tV(A), B]) dt=0,

holds (weak asymptotic abelianness in the mean). Then S ±
V (g)=S ±

V (w)
for all g ¥Nw. In particular, if Ker LV ] {0}, then it is one-dimensional and
there is a unique w-normal yV-invariant state wV such that S ±

V (g)={wV}
for all g ¥Nw.

3.1.2. Normal and Singular NESS

From now on, we fix the initial state w, and investigate the structural
properties of the states in S ±

V (w). First we remark that if the GNS-repre-
sentation pw is not faithful, we can consider the quotient dynamical system
on the algebra O/Kerpw (which has a faithful representation on Hw). One
easily sees that the NESS of the original system are obtained by lifting to O

the NESS of the quotient system with the help of the canonical projection
r: OQ O/Kerpw. Thus, without loss of generality, we may assume that the
GNS-representation pw is faithful and identify O with pw(O).

A positive linear functional m ¥ Og is called w-normal iff m=ln for
some n ¥Nw and l > 0. It is called w-singular iff m \ f \ 0 for some
w-normal f implies f=0. Any state m ¥ E(O) has a unique decomposition

m=mn+ms, (9)

where mn and ms are positive linear functionals and mn is w-normal while ms
is w-singular (in particular, mn and ms are disjoint, see refs. 22 and 23 for
details). Since w-normal states are mapped to w-normal states by yV, the
uniqueness of this decomposition implies that if m is yV-invariant, then both
mn and ms are yV-invariant. We say that a NESS m ¥ S ±

V (w) is normal if
its w-singular part ms is zero and purely singular if its w-normal part mn is
zero.
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Theorem 3.2. Assume that m ¥ S ±
V (w), then:

1. If m is a factor state, it is either normal or purely singular.
2. If w is a factor state, either m is purely singular or every w-normal

state is also m-normal.

If the system has settled into a NESS m ¥ S+V (w), then it is described
by the quantum dynamical system (O, yV, m). From the point of view of
thermodynamics, a fundamental question is whether this system has a
strictly positive entropy production. At this level of generality, it is far from
obvious even how to define entropy production. We will return to this
question in Section 4. We will prove that the entropy production of the
normal part mn is always zero. Therefore, a necessary condition for non-
trivial thermodynamics is that m ¨Nw. In other words, m must be ‘‘suffi-
ciently far’’ from w, so far in fact that it does not ‘‘live’’ in the same Hilbert
space Hw. Although physically natural, this restriction is one of the main
sources of difficulty in the mathematical study of NESS.

The following result gives useful criteria for a system to have either
purely singular or normal NESS.

Proposition 3.3. Assume that w is modular, and let LV be the
Liouvillean of the locally perturbed system (O, yV).

1. If Ker LV={0}, then any NESS in S ±
V (w) is purely singular.

2. If Ker LV contains a separating vector for Mw, then

S+V (w)=S−
V (w)={m} …Nw.

We finish with a brief discussion of equilibrium vs. non-equilibrium
steady states in quantum statistical mechanics. Consider a quantum
dynamical system (O, y, w) and assume that w is a (y, b)-KMS state for
some b > 0. The Araki perturbation theory of KMS states (9, 24, 25) yields that
for any local perturbation V there exist a w-normal (yV, b)-KMS state wV.
Under normal conditions, it is expected that for any g ¥Nw, S ±

V (g)=
{wV}. There is no interesting thermodynamics in the sense that the entropy
production of wV is zero. Hence the main question in thermal equilibrium
is whether the quantum dynamical system (O, yV, wV) is ergodic or returns
to equilibrium. Although it is generally expected that these properties hold
for physical systems under normal conditions (the zeroth law of thermo-
dynamics), there are very few non-trivial models for which this has been
proven (see refs. 15, 26–28).

The expected scenario in the non-equilibrium case is quite different.
One considers a quantum dynamical system (O, y, w) which is not in
thermal equilibrium and a local perturbation V. Under the influence of the
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perturbation the system will settle into a NESS w+V ¥ S+V (w). One expects
that under normal circumstances limtQ+. g p y tV=w+V for all g ¥Nw. More-
over, one expects that w+V ¨Nw and that the entropy production associated
to w+V is strictly positive. Establishing this scenario for physically relevant
models is one of the central goals of non-equilibrium quantum statistical
mechanics.

3.2. Stability

From a physical point of view, the prominent feature of thermal equi-
librium is its stability under local perturbations. This basic phenomenon
appears in two flavors: Structural and dynamical stability.

Let (O, y, w) be a quantum dynamical system where w is a (y, b)-KMS
state. It follows from Araki’s theory (9, 24, 25) that for every local perturbation
V there is a (yV, b)-KMS state wV ¥Nw such that

||wV−w||=O(||V||). (10)

Moreover the map w W wV is, for fixed V, a bijection from the set of
(y, b)-KMS states to the set of (yV, b)-KMS states. This shows that the
set of thermal equilibria of the system is structurally stable under local
perturbations.

Dynamical stability does not hold without further assumption.
However, if we assume that

lim
TQ ±.

1
T

F
T

0
||[V, y tV(A)]|| dt=0, (11)

for all A ¥ O, then any NESS in S ±
V (w) is a (yV, b)-KMS state (this is a

simple variant of Proposition 5.4.6 in ref. 9). Moreover, if (O, yV, wV) is
ergodic, then the structural isomorphism w W wV is dynamically realized as
S ±
V (w)={wV}.

It is a deep fact that thermal equilibrium is actually characterized by
the stability criteria (10) and (11). There are several results in this direction.
We will describe one of them, for others see refs. 29–32. The following
ergodicity assumption will be needed.

(E) For any self-adjoint element V of a norm-dense f-subalgebra
O0 … O there is a lV > 0 such that

F
.

−.
||[V, y tlV(A)]|| dt <., (12)

holds for all |l| < lV and A ¥ O0,
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Under assumption (E), for any self-adjoint V ¥ O0 the strong limits

c ±lV — lim
tQ ±.

y−tlV p y t,

a ±lV — lim
tQ ±.

y−t p y tlV,

exist on O for all |l| < lV. The Møller morphisms c ±lV are f-automorphisms
of O and (c ±lV)

−1=a ±lV. Since w p y tlV=w p y−t p y tlV, we get

S ±
lV(w)={w

±
lV},

with w ±
lV — w p a ±lV. It follows that w=w ±

lV p c ±lV=limtQ ±. w ±
lV p y t, from

which we get the formula

w+lV(A)−w−
lV(A)=il F

.

−.
w sign(t)lV ([V, y t(A)]) dt. (13)

The stability requirement is:

(S) For any self-adjoint V ¥ O0 and l small enough, there exists a
ylV-invariant state wlV ¥Nw, such that

S ±
lV(w)={wlV} and lim

lQ 0
||wlV−w||=0.

Assume that (E) and (S) hold, then w+lV=w−
lV and it follows from

Eq. (13) and the dominated convergence theorem that

F
.

−.
w([V, y t(A)]) dt=0. (14)

This is the famous stability criterion of ref. 30. It is a well-known result of
Haag and Trych-Pohlmeyer, (31) and of Bratteli et al. (29) that (14) together
with (E) implies that w is a KMS state. More precisely,

Theorem 3.4. Assume that w is a factor state and that assumption
(E) holds. Then (S) holds if and only if w is a (y, b)-KMS state for some
b ¥ R 2 {±.}.

An example of Cg-dynamical system satisfying condition (E) is the
even subalgebra (Oe, y) of a free Fermi gas introduced in Section 2.3.2. Let
O0 be the f-subalgebra of Oe consisting of finite sum of monomials

a#(f1) · · · a#(f2n), (15)
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such that for all i, j,

(fi, e−ithfj) ¥ L1(R). (16)

Then condition (12) holds for any A ¥ O0, any self-adjoint V ¥ O0 and any
l ¥ R. Moreover, the algebra O0 is norm-dense in Oe iff h has purely abso-
lutely continuous spectrum (see ref. 33 for details).

The stability of thermal equilibrium can also be understood in spectral
terms. Consider a quantum dynamical system (O, y, w), and assume that
the y-invariant state w is modular. Since LWw=0, zero is an eigenvalue of
the standard Liouvillean L of the system. There might be other eigenvec-
tors in Ker L, associated to other w-normal invariant states. In physical
situations of interest, the zero eigenvalue is embedded in the continuous
spectrum of L which covers the entire real line. It is a piece of folklore that,
unless prevented by some symmetry, this eigenvalue will turn into complex
resonances under the influence of a local perturbation V. Therefore, one
expects that the standard Liouvillean LV=L+V−JVJ of the perturbed
system (O, yV) will have purely continuous spectrum and that there will be
no yV-invariant state in the folium Nw. Indeed, by computing the Fermi
golden rule for LlV, the stability requirement (14) can be seen to be a con-
dition which ensures that zero is an eigenvalue of LlV to second order of
perturbation theory. Moreover, the KMS condition Eq. (4) can be inter-
preted as a form of symmetry which forces LV to have a zero eigenvalue.
To see this, note that since JVJ belongs to the commutant OŒ, we have

e i(L+V) tJVJe−i(L+V) t=e iLtJVJe−iLt.

Therefore, using Eq. (4), we can write

e i(L+V) t LV e−i(L+V) tWw=(L+V− e iLtJVJe−iLt) Ww

=VWw− e iLtJVWw

=(V−D−it/bw JV) Ww.

The analytic continuation of the right hand side of the last identity to
t=−ib/2 further gives

(V−D−1/2w JV) Ww=(V−JD1/2w V) Ww=(V−Vg) Ww=0,

from which we conclude that

WV — e−b(L+V)/2Ww, (17)
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must be in the kernel of LV. In fact, up to normalization, Eq. (17)
is nothing but Araki’s formula for the vector representative of the
(yV, b)-KMS state wV, see, e.g., refs. 9, 24, and 25.

3.3. The Study of NESS

From the above discussion, it should be clear that the study of local
perturbations of a quantum dynamical system (O, y, w) depends critically
on the nature of the state w. We can distinguish two cases:

1. If w is a (y, b)-KMS state, we are dealing with a system near
thermal equilibrium. We expect that

lim
tQ ±.

g p y tV(A)=wV(A),

for any initial state g in the folium Nw and any A ¥ O, where wV is a
(yV, b)-KMS state. This ergodic problem can be reduced to the spectral
analysis of the standard Liouvillean LV. Although spectral theory of the
standard Liouvillean has been so far understood only for very few systems,
the conceptual framework of ergodic theory near thermal equilibrium is
well-understood.

2. If w does not belong to the folium of a (y, b)-KMS state, the
system is far from equilibrium. In contrast with the former case, the con-
ceptual framework for the study of NESS is not well-understood. In the
remaining part of this subsection, we describe the two approaches that
have been adopted so far in the mathematically rigorous literature.

3.3.1. The Scattering Approach

Let (O, y, w) be a quantum dynamical system and V a local perturba-
tion such that for all A in a norm-dense f-subalgebra O0 … O,

F
.

−.
||[V, y t(A)]|| dt <., F

.

−.
||[V, y tV(A)]|| dt <.. (18)

As in the previous subsection, these conditions ensure that the strong limits

a ±V — lim
tQ ±.

y−t p y tV,
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exist and define f-automorphisms of O. It follows that that S ±
V (w)={w

±
V }

and

w ±
V=w p a ±V= lim

tQ ±.
w p y tV(A).

The Møller morphisms a ±V induce unitary operators U ±V between the GNS
spaces Hw and Hw ±V . These operators intertwine the representations pw p a ±V
and pw ±V and provide unitary equivalences between the standard Liouvilleans
associated to w and w ±

V . Under some additional regularity assumptions one
can also show that for suitable A ¥ O,

w ±
V (A)=w(A)+C

n \ 1
(± i)n F

.

0
dt1 F

t1

0
dt2

· · ·F
tn−1

0
dtn w([y ±tn(V), [..., [y ±t1(V), A]]]). (19)

The expansion (19) can be used for perturbative computations of basic
thermodynamic quantities such as entropy production and heat fluxes.

It is important to remark that the assumptions (18) are very difficult to
verify in concrete physically interesting models, and so far they have been
established only for a few examples. Nevertheless, we believe that the scat-
tering approach is a helpful tool in developing the conceptual understand-
ing of the subject, much in the spirit of the ‘‘chaotic hypothesis’’ used in
classical non-equilibrium statistical mechanics (see ref. 34).

An example of a system where (18) holds has been provided by
Botvich and Malyshev. (33) Consider a free Fermi gas with one particle
Hilbert space H and one particle energy h. Assume that h has purely abso-
lutely continuous spectrum. Let O0 consists of finite sums of monomials

a#(f1) · · · a#(fn),

such that (16) holds. Set V — lP, where P ¥ O0 is an even polynomial. Then
(18) holds for sufficiently small l ¥ R. In this case, each term in the expan-
sion (19) is well-defined, and the series converges absolutely for all A ¥ O0.

3.3.2. The Spectral Approach

As already pointed out, the thermodynamically interesting NESS
associated to a local perturbation V of the quantum dynamical system
(O, y, w) are not in the folium Nw. Since on the other hand the kernel
of LV, and more generally its eigenvectors, provide information about
w-normal yV-invariant states, the thermodynamical content of the spectral
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theory of LV is not easily decoded. This explains why, for many years,
scattering theory was the only available approach to the study of singular
NESS.

Recently, in ref. 2, we have developed a spectral theory of NESS
which we describe here in its simplest setting. According to the remark in
Section 3, we define NESS using Abelian averaging (8).

Let (O, y, w) be a quantum dynamical system andV a local perturbation.
Assume that w is a modular state and that the map

R ¦ tW Vt=e itLwVe−itLw ¥Mw

extends to an analytic function (in norm) inside the complex strip
{0 < Im z < 1/2}, bounded and continuous on its closure (the set of such V
is total in Mw). The C-Liouvillean of the locally perturbed system is defined
by

L. — L+V−JV−i/2J.

This operator is closed on D(L.) —D(L). Its spectrum is contained in
{|Im z| [ ||V±i/2 ||}, and its adjoint is given by

Lg
.=L+V−JVi/2J.

The operators iL. and iLg
. generate quasi-bounded strongly continuous

groups on Hw. By construction Ww ¥ Ker L., thus

e itL.Ww=Ww,

(see Eq. (2)) and it follows from the Trotter product formula that

y tV(A)=e itL.Ae−itL.=e itL
g
.Ae−itL

g
.. (20)

For Im z > 0, we define linear functionals wz ¥ Og by the formula

wz(A) — i F
.

0
e iztw(y tV(A)) dt.

Clearly, the map zW wz is weak-* analytic in the half-plane {Im z > 0}.
Moreover, for Im z > ||V±i/2 ||, we have

wz(A)=(Ww, A(L
g
.−z)

−1 Ww).
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This formula and the fact that Abelian NESS m ¥ S ±
V, Ab(w) are weak-f

limit points, as E a 0, of (E/i) wiE suggests that NESS are described by zero-
resonance eigenvectors of Lg

.. Indeed, it is possible to develop an abstract
axiomatic complex deformation technique which allows to directly relate
NESS to the zero-resonance eigenvectors of Lg

.. This method has been
used in ref. 2 to study the NESS of a finite quantum system coupled to
several fermionic reservoirs at different temperatures. This analysis has led
to results which could not be reached by scattering methods. In particular,
it allows to obtain precise information on the relaxation to the NESS from
the study of complex resonances of the C-Liouvillean. We briefly describe
the model and results of ref. 2 in Section 5.3.

The spectral approach to the study of NESS is a recent development
which has led to some insights into the general structure of the non-equi-
librium quantum statistical mechanics and has been a useful tool in the
study of some concrete models. The method is still being developed and its
full potential remains to be reached. It should be noticed that this approach
to the dynamical properties of quantum dynamical system is closely related
to the study of the decay of correlations in classical dynamical systems, and
in particular to Ruelle resonances of the transfer operator (see, for example,
refs. 35–38).

4. ENTROPY PRODUCTION

4.1. Phenomenological Considerations

In non-equilibrium thermodynamics, the local entropy production rate
s is defined as the source term in the local entropy balance equation

“ts+div s=s,

where s is the entropy density and s the entropy flux. In a stationary state,
the total entropy production rate in a subsystem S is therefore equal to the
net entropy flux leaving this subsystem. If S interacts with independent
reservoirs R1, R2,..., which are in thermal equilibrium at inverse tempera-
ture b1, b2,..., then entropy leaves S with a rate given by the formula

−C
k

bkFk,

where Fk denotes the energy current leaving the reservoir Rk (see Fig. 2).
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Fig. 2. The energy currents Fk.

The Hamiltonian of the combined system S+R1+·· · is

H=HS+C
k
HRk
+V,

where V describes the interaction between S and the reservoirs. The
Heisenberg equation for the total energy of the reservoir Rk leads to the
expression Fk=−i[H, HRk

]=−i[V, HRk
]. To make the connection with

the algebraic formulation we note that

Fk=dk(V),

where dk — i[HRk
, · ] is the generator of the dynamics of Rk. The entropy

production rate in a stationary state m can now be written as

Ep(m)=m 1 −C
k

bkdk(V)2 . (21)

Clearly, the argument leading to this formula physically makes sense only
in the idealized case where the interaction V is so small that it does not
affect the thermal equilibrium states of the reservoirs. In concrete models,
strictly speaking this will only be the case if either V=0 or b1=b2=·· · .
However, if the reservoirs are initially in thermal equilibrium at different
temperatures, we do not expect a local perturbation V to be strong enough
to induce a global approach to thermal equilibrium in the combined system
S+R1+·· · . In such circumstances, provided that the restriction to Rk of
the NESS m remains sufficiently close to the initial thermal equilibrium, the
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quantity defined in Eq. (21) should still carry useful information on the
thermodynamics of the system.

In fact, as we shall see in the next section, Ep(m) has many of the
expected properties of an entropy production. In particular, Ep(m) \ 0 for
an NESS m, and the strict positivity of Ep(m) is a sufficient condition for
the existence of energy currents. Thus, we consider Eq. (21) as a sufficient
motivation for the general definition of entropy production given below.
We refer the reader to refs. 5–7 for a more detailed discussion of entropy
production in spin systems.

4.2. Definition and Basic Properties

Let (O, y, w) be a quantum dynamical system. For any state g ¥Nw we
denote by Ent(g | w) the relative entropy of g with respect to w. The basic
properties of the relative entropy are discussed in the monograph of ref. 13.
We recall that Ent(g | w) [ 0 and that for finite quantum systems

Ent(g | w)=Tr(g(log w− log g)). (22)

Note also that our notation for the relative entropy differs from the one
originally introduced by Araki in refs. 39 and 40 by a sign and the order of
its two arguments.

We shall need two assumptions. The first one concerns the state w:

(A1) There exists a Cg-dynamics sw such that w is a (sw, −1)-KMS
state.

Remark 1. The choice of the reference temperature b=−1 in (A1)
is made for mathematical convenience. If (A1) holds, then for any b ] 0
there is a Cg-dynamics sw, b such that w is (sw, b, b)-KMS state (set
s tw, b=s−t/bw ). Let us also point out that a state satisfying (A1) is modular
and that Takesaki’s theorem shows that s tw(A)=e itLwA −itLw.

Remark 2. A state which can be factorized into a product of KMS
states satisfies condition (A1). Indeed, if

w=ë
N

k=0
wk, (23)

where wk is (yk, bk)-KMS, then w is (êk y−bk tk , −1)-KMS. Since this is
a common situation in non-equilibrium statistical mechanics, our first
hypothesis is quite natural.

808 Jakšić and Pillet



Let dw be the generator of sw. Our second assumption is a regularity
condition for the local perturbation V:

(A2) V ¥D(dw).

Remark 3. To make the connection with the discussion of the
previous section and Formula (21), note that for the state (23) we get

dw=−C
k

bkdk,

where dk is the generator of yk. Thus, identifying the factor corresponding to
k=0 with the system S and the remaining factors with the reservoirs Rk,
we can easily reproduce Formula (21) by setting b0=0.

For a y-invariant state w satisfying Hypothesis (A1) and a local per-
turbation V satisfying (A2), we introduce the observable

sV — dw(V) ¥ O,

and define the entropy production of the locally perturbed system (O, yV)
in the stationary state g ¥ E(O), with respect to the reference state w, as

Ep(g) — g(sV).

The following theorem is a simple extension of the main result in ref. 1
(see ref. 3 for the proof ).

Theorem 4.1. Assume that Hypotheses (A1) and (A2) hold. Then,
for any state g ¥Nw one has

Ent(g p y tV | w)=Ent(g | w)−F
t

0
g p y sV(sV) ds, (24)

both sides of this equality being either finite or −..

The proof of Theorem 4.1 is based on the Araki perturbation theory
of KMS states. (24) It is however an instructive elementary exercise to
verify relation (24) for finite quantum systems. We use the notation of
Example 2.3.1 and set

gt — g p y tV=e−it(H+V)g e it(H+V).
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From Eq. (22) we get

Ent(g p y tV | w)=Tr(gt log w)−Tr(gt log gt)

=Tr(gt log w)−Tr(g log g),

and hence

d
dt

Ent(g p y tV | w)=i Tr([gt, H+V] log w).

Since w is y-invariant, we have [log w, H]=0 and the cyclicity of the trace
leads to

d
dt

Ent(g p y tV | w)=−i Tr(gt [log w, V]).

Finally, note that dw(V)=i[log w, V], from which we conclude

d
dt

Ent(g p y tV | w)=−Tr(gt dw(V))=−g p y tV(dw(V)).

In the rest of this section we describe some basic properties of the
entropy production. Let m ¥ S+V (w) be such that m(A)=limn wTn(A), then
one has

lim
n

1
Tn

Ent(w p yTnV |w)=−lim
n

1
Tn

F
Tn

0
w p y tV(sV) dt=−Ep(m). (25)

The following result follows immediately from this relation.

Theorem 4.2. Assume that Hypotheses (A1) and (A2) hold. Then,
any m ¥ S+V (w) satisfies

Ep(m) \ 0.

Remark. Obviously Ep(m) [ 0 if m ¥ S−
V (w). In particular, Ep(m)=0

for any m ¥ S+V (w) 5 S−
V (w).

As displayed by Formula (25), Ep(m) describes the rate at which the
relative entropy decreases along the trajectory w p y tV. The idea of defining
entropy production as the asymptotic rate of decrease of some relative
entropy was already present in the early works (see refs. 41 and 42), although
in the slightly different context of quantum semigroups. For quantum
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dynamical systems, a similar construction can be found in refs. 43–45,
where the positivity of entropy production is also discussed.

The next result shows that this asymptotic behavior, and thus the
value of Ep(m), is essentially independent of the choice of the reference
state used to compute the relative entropy.

Proposition 4.3. Assume that (A1) holds, then there is a norm-
dense set of states N −

w …Nw such that, as tQ.,

Ent(g p y tV |wŒ)=Ent(g p y tV |w)+O(1),

for any wŒ ¥N −

w and any g ¥Nw.

Since we believe that a state m ¥Nw describes the same thermody-
namics as w, we expect such a state to have vanishing entropy production.
This was shown in ref. 1 under the assumption that m is faithful. The next
statement generalizes this result.

Proposition 4.4. Assume that Hypotheses (A1) and (A2) hold.
Then, for any yV-invariant, w-normal state m, one has

Ep(m)=0.

Under the assumptions of the above proposition it follows that, for
any NESS m ¥ S ±

V (w), one has

Ep(m)=ms(sV),

where ms denotes the w-singular part of m. Thus the singular part of a
NESS contains the full information about its entropy production.

The reverse of Proposition 4.4 holds in a slightly weaker form:

Proposition 4.5. Assume that (A1) and the following condition
hold,

lim inf
tQ.

Ent(w p y tV | w) > −..

Then, one has

S+V (w)=S−
V (w)={m} …Nw.

Under some weak ergodicity assumption, we can actually characterize
w-normality of a NESS by the vanishing of its entropy production. This
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result is an effective way to prove strict positivity of entropy production in
some interesting examples, see Section 5.3.

Proposition 4.6. Assume that m ¥ S+V (w) satisfies

sup
T > 0

:FT
0
(w p y tV(sV)−m(sV)) dt : <.. (26)

Then m is w-normal if and only if Ep(m)=0.

Finally, we wish to briefly come back to the interpretation of entropy
production. For a NESS m ¥ S ±

V (w), we have seen that Ep(m) describes the
divergence rate of the entropy of w p y tV relative to a ‘‘typical’’ reference
state in Nw. However, we do not yet have such an interpretation for an
arbitrary yV-invariant state g ¥ E(O) (we are grateful to J. L. Lebowitz for
raising this question).

Let g ¥ E(O) be an arbitrary state. Since Nw is weak-f dense in E(O),
there is a sequence gn ¥Nw which converges towards g in the weak-f
topology. Moreover, one easily arranges that sequence to satisfy Ent(gn | w)
> −.. By Theorem 4.1, the limit

DS(g, t) — lim
n
(Ent(gn p y tV | w)−Ent(gn | w)), (27)

exists, is independent of the choice of the approximating sequence gn and
satisfies

DS(g, t)=−F
t

0
g p y sV(sV) ds.

Hence, if g is yV-invariant, then Ep(g) is the rate of divergence of the
entropy differential DS,

DS(g, t)=−t Ep(g).

4.3. Stability and Entropy Production

Let (O, y, w) be a quantum dynamical system such that (O, y) satisfies
Assumption (E) of Section 3.2 for some f-subalgebra O0. It follows that for
any self-adjoint V ¥ O0 and |l| < lV, one has S ±

lV(w)={w
±
lV}. Assume that

w satisfies Hypothesis (A1) and that (A2) holds for all self-adjoint V ¥ O0.
Finally suppose that the following assumption also holds:
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(A3) For all self-adjoint V ¥ O0

sup
|l| < lV, t > 0

:F t
0
(w p y slV(sV)−w+lV(sV)) ds : <..

By Theorem 4.1, if Ep(w+lV)=0 the assumptions of Proposition 4.5
hold and therefore

w+lV=w−
lV ¥Nw.

Moreover, the well-known entropic inequality

||w+lV−w||2 [ −2 Ent(w+lV | w),

together with the upper semi-continuity of the relative entropy, yields the
estimate

||w+lV−w||2=O(l).

Thus the stability assumption (S) is satisfied and, provided w is a factor
state, Theorem 3.4 yields that w is a (y, b)-KMS state for some b ¥ R 2
{±.}.

Hence, under sufficient regularity assumptions, w is a KMS state if
and only if the entropy production vanishes for sufficiently many local
perturbations V. More precisely:

Theorem 4.7. Let (O, y, w) be a quantum dynamical system where
w is a factor state satisfying (A1). Assume that (E) holds and that (A2)
holds for all self-adjoint V ¥ O0. Finally assume that (A3) holds. Under
these hypotheses, w is a (y, b)-KMS state for some b ¥ R 2 {±.} if and
only if Ep(m)=0 for all m ¥ S+lV(w), all local perturbations V ¥ O0 and all
sufficiently small l ¥ R.

Examples where all conditions of Theorem 4.7 are satisfied can be
constructed using the even subalgebra of a free Fermi gas. We omit the
details.

4.4. Time-Dependent Perturbations

In this section we consider time-dependent local perturbations of a
quantum dynamical system (O, y, w). The response of the system to such
perturbations will shed an additional light on the notion of entropy
production.
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The entropy production for time-dependent perturbations of Cg-dynam-
ical systems have been previously studied in refs. 43–45. Some of the basic
formulas of this section seem to be known for a long time (see Remark on
p. 281 in ref. 46).

A time-dependent local perturbation is specified by a norm-continu-
ous, self-adjoint, O valued function V(t) on R. The perturbed time evolu-
tion is a family of norm-continuous automorphisms of O given by the
formula

y tV(A) — y t(A)+C
n \ 1
in F

t

0
dt1 F

t1

0
dt2

· · ·F
tn−1

0
dtn [y tn(V(tn)), [..., [y t1(V(t1)), y t(A)]]].

Note that in general y tV is not a group.
The usual interaction representation of this time evolution is given by

y tV(A)=C t
Vy t(A) C t*

V , (28)

where C t
V is the unitary element of O satisfying the differential equation

d
dt

C t
V=iC

t
Vy t(V(t)), (29)

with the initial condition C0
V=1.

Throughout this section, we assume that the state w satisfies (A1) and
that V(t) satisfies (A2) for all t. Moreover, the maps tW V(t) and tW
dw(V(t)) are assumed to be respectively C1(R, O) and C(R, O). We set

sV(t) — dw(V(t)),

and for any state g ¥ E(O), we define the rate of entropy production by

Ep(g, t) — g(sV(t)). (30)

The analog of the Theorem 4.1 is the following result.

Theorem 4.8. For any state g ¥Nw, such that Ent(g | w) > −.,
one has

Ent(g p y tV | w)−Ent(g | w)=−F
t

0
g p y sV(sV(s)) ds=−ig(C

t
Vdw(C

t*
V)).

(31)
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Its proof follows closely the proof of Theorem 4.1. Time-dependent
local perturbations allow us to discuss some physical aspects of entropy
production which could not be discussed within the framework of Section 4.2.
The most interesting of those aspects involves the relation between entropy
production and Carnot’s version of the second law of thermodynamics.

Assume that the system (O, y, w) is initially in thermal equilibrium
—this means that w is a (y, b)-KMS state, where b > 0 is the inverse tem-
perature. The KMS condition implies that dw=−bd. Assume also that
V(t) vanishes outside of the interval [0, T]. Relation (31) yields that

Ent(w p yTV | w)=ibw(CT
Vd(CT*

V )). (32)

On the other hand, the quantityW — −iw(CT
Vd(CT*

V )) is precisely the work
done on the system by the time-dependent force V. Let us briefly elaborate
this well-known point (see Section V.3.3 in ref. 10 and Appendix to Sec-
tion IV.5 in ref. 11). Assume that our system is finite, that is, that O is a
finite dimensional algebra. Denote by H the Hamiltonian of the unper-
turbed system, so that d( · )=i[H, · ]. The Hamiltonian of the perturbed
system is H(t)=H+V(t), and its energy at time t is

e(t)=w(y tV(H(t)).

Since H(T)=H, the total amount of work done on the system is given by

W=e(T)−e(0)=w(yTV(H))−w(H)

=−F
T

0
w p y tV(d(V(t))) dt

=−iw(CT
Vd(CT*

V )), (33)

where the last relation is easily derived with the help of (29) and (28).
For infinite systems, the total energy is infinite and H is not well-defined.
However, the work W remains a well-defined quantity given by one of
the two last formulas in (33). In particular, Eq. (33) yields the following
expression for the instantaneous power dissipated into the system:

FV(t) — −w p y tV(d(V(t))).

Equation (32) is the integrated form of the relation

Ep(w p y tV, t)=bFV(t). (34)

Obviously, (32) and (34) are expressions of the thermodynamical relation
dS=b dQ.
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We further remark that since the relative entropy is always non-posi-
tive and b > 0, (32) implies that the energy W transfered by the external
perturbations is always non-negative—this is Carnot’s version of the second
law of thermodynamics which says that one cannot extract work from a
system in thermal equilibrium. With regard to the usual discussion of passi-
vity, energy transfer and the second law of thermodynamics (see refs. 9–12),
we emphasize the relation of these notions with entropy production.

Consider now two independent systems (Ok, yk, wk), each of which is
in thermal equilibrium at inverse temperature bk (wk is a (yk, bk)-KMS
state). We set

O=O1 é O2, y=y1 é y2, w=w1 é w2,

and denote by dk the generator of yk. The generator of y is given by d=
d1+d2. As already noticed, Assumption (A1) holds and dw=−(b1d1+b2d2).
Let V(t) be a time-dependent local perturbation of (O, y, w), vanishing
outside of the time interval [0, T], and establishing a temporary link
between the two subsystems. In accordance with the above discussion, the
total work done by the external perturbation is

W=−iw(CT
Vd(CT*

V )).

Obviously,W=W1+W2, where

Wk=−iw(C
T
Vdk(C

T*
V )),

is interpreted as the work done on the kth subsystem. As in the previous
example, it follows from Theorem 4.8 that

b1W1+b2W2=−Ent(w p yTV | w). (35)

Relation (35) has an interesting consequence. (46) If Tk — b−1k denotes
the temperature of the kth subsystem and T1 > T2, then w is not a thermal
equilibrium state, and in principle it is possible to have W1 < 0, which
means that the first system produces a positive amount of work during a
cyclic process. Since the relative entropy is non-positive, we get from (35)
thatW< 0 and

W
W1

[
T1−T2
T1
.

This is the well-known Carnot’s formula which states that the efficiency of
a heat engine is limited by (T1−T2)/T1, where T1 is the temperature of the
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heat source and T2 the temperature of the heat sink (compare with remark
on p. 216 of refs. 9 and 46).

A deep result of Pusz and Woronowicz (46) asserts that (under a mild
additional regularity condition and assuming T1 > T2) there exist pertur-
bations V(t) satisfying all our conditions and such that W1 < 0 (see also
Theorem 5.4.28 in ref. 46). It suffices, for example, that the systems
(Ok, yk, wk) have the property of return to equilibrium.

5. THERMODYNAMICS OF FINITE QUANTUM SYSTEMS COUPLED

TO THERMAL RESERVOIRS

In this section we consider a more specific class of models where a
finite quantum system S interacts with several extended reservoirs Rk
which are at thermal equilibrium at different inverse temperatures bk. This
class of models is a basic paradigm of non-equilibrium quantum statistical
mechanics. (2, 4, 42) The classical statistical mechanics of such systems has
been developed in refs. 47–49.

We define these models and describe their basic properties in Section 5.1.
The general features of the scattering approach and spectral analysis of
these models are described in Section 5.2. Finally, in Section 5.3, we discuss
a concrete example.

5.1. The Model

The system S is a finite quantum system, as described in Section 2.3.1.
We denote its Hilbert space by HS and its Hamiltonian by HS. The corre-
sponding Cg-dynamical system is (OS, yS) and we denote its (yS, 0)-KMS
state (i.e., the normalized trace on OS) by wS0.

Each reservoir Rk, k=1,..., M, is a quantum dynamical system
(Ok, yk, wk), in thermal equilibrium at inverse temperature bk. Thus wk is a
(yk, bk)-KMS state. We denote by dk the generator of yk.

The combined system S+R1+·· ·+RM is described by the quantum
dynamical system (O, y, w) where

O — OS é O1 é · · · é OM,

and the free (i.e., decoupled) dynamics is given by

y=yS é y1 é · · · é yM.
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We are interested in initial states of the form

w=wS é w1 é · · · é wM, (36)

where wS is a faithful, yS-invariant state on OS. We denote the set of such
product states by NS. If (Hw, pw, Ww) is the GNS-representation associated
to w ¥NS, then Hw and pw do not depend on the choice of w.

The coupling of the finite system S with the reservoir Rk is specified
by a self-adjoint element Vk ¥ OS é Ok. Note that Vk is naturally identified
with an element of O. We will use such obvious identification without
further comment. The complete interaction is given by the local perturbation

lV=l C
M

k=1
Vk,

where l is a coupling constant. We assume that Vk ¥D(dk) for all k, and
therefore V ¥4k D(dk). The generator of the locally perturbed dynamics
ylV is given by

dlV=C
M

k=1
dk+i[HS+lV, · ]. (37)

The goal is to study the NESS of (O, ylV) associated to the initial
states w ¥NS. As remarked in Section 4.1, the observable describing the
heat flux from the Rk into the system S is

Fk — ldk(V)=ldk(Vk).

It follows from Eq. (37) that the heat fluxes satisfy the energy balance
relation

C
M

k=1
Fk=dlV(HS+lV),

from which we immediately obtain the following expression of the first law
of thermodynamics

Proposition 5.1. For any yV-invariant state g, one has

C
M

k=1
g(Fk)=0.
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It is also possible to define the heat flux from the kth reservoir into
the system S as the ‘‘change of energy’’ of S due to the coupling to Rk.
We then obtain the observables

F̃k —
d
dt

y tlVk (HS)|t=0=i[lVk, HS], (38)

which satisfy the energy balance relation

C
M

k=1
F̃k=dlV(HS). (39)

The relation with the previously defined heat flux is given by

F̃k=Fk−ldlV(Vk)+il2[V, Vk]. (40)

Note that both Fk and F̃k are O(l), while Fk− F̃k is O(l2), up to a total
derivative. From Eqs. (39) and (40) we obtain the following result.

Proposition 5.2. For any yV-invariant state g, one has

C
M

k=1
g(F̃k)=0.

Moreover, if [V, Vk]=0, then g(Fk)=g(F̃k).

Finally, we relate the heat fluxes to entropy production. For this
purpose, it is convenient to choose the reference state

w0=wS0 é w1 é · · · é wM,

where wS0 is the KMS state of S at b=0. Then we have dw0=−;k bkdk.
One shows that for any w ¥NS,

Ent(w p y tV | w)=Ent(w p y tV | w0)+O(1),

as tQ., and the following result is immediate.

Proposition 5.3. Assume that w ¥NS, then for any m ¥ S+V (w) one
has

C
M

k=1
bkm(Fk)=−Ep(m). (41)
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Formula (41) is the basic thermodynamic relation between heat fluxes
and entropy production. In particular, if Ep(m) > 0, the NESS m carries
non-vanishing energy currents.

5.2. The Study of NESS

In Section 3.3 we have discussed the scattering and spectral approaches
to the study of NESS for general quantum systems. In this subsection we
describe features of these methods which are particular to the specific
model S+R1+·· ·+RM.

5.2.1. The Scattering Approach

The scattering approach described in Section 3.3.1 has to be slightly
modified to accommodate for the finite subsystem S. The necessary
changes are described in ref. 4. Setting

OR — O1 é · · · é OM,

yR — y1 é · · · é yM,

wR — wb1 é · · · é wbM ,

the Cg-dynamical system (OR, yR) describes free non-interacting reservoirs.
Assume that there exists norm-dense subalgebras O0 … O and OR0 … OR

such that, for A ¥ O0 and AR ¥ OR0,

F
.

−.
||[V, y t(1S é AR)]|| dt <., F

.

−.
||[V, y tV(A)]|| dt <.. (42)

The first condition ensures that the limits

c ±V (AR) — lim
tQ ±.

y−tV p y t(1S é AR),

exist in norm and define f-morphisms c ±V : OR Q O. The second condition
ensures that the strong limits

a ±V — lim
tQ ±.

y−t p y tV,

exist and define f-morphisms a ±V : OQ O. One shows that for A ¥ O,

a ±V (A)=1S é a ±VR(A),
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where a ±VR=(c
±
V )
−1. Thus a ±VR are in fact f-isomorphisms. The sets S ±

V (w)
consist of single NESS w ±

V and

w ±
V=w p a ±V=wR p a ±VR.

Under some additional assumption one can also construct perturbative
expansions of w ±

V analogous to (19). For details and additional informa-
tion we refer the reader to ref. 4.

The abstract scattering method is elegant and provides a fairly
complete framework for the study of NESS. However, in concrete models,
the verification of conditions (42) (or suitable variants of them) is a rather
difficult mathematical problem.

There exists a number of interesting, essentially exactly solvable
models, for which conditions (42) (or suitable variants of them) can be
verified. One such model is the extensively studied XY spin chain. (20, 21)

Another one involves a single spin coupled to free fermionic reservoirs. (50)

It would be interesting to study the NESS of these models in detail and
show that they have strictly positive entropy production.

5.2.2. The Spectral Approach

In this section we take into account the additional structure of the
model S+R1+·· ·+RM to elaborate the spectral theory of NESS
described in Section 3.3.2. Let (HS, pS, WS) be the GNS-representation of
OS associated to the (yS, 0)-KMS state wS0. The Liouvillean LS is then
given by

LS=HS é 1−1 é H̄S,

and if {Ei} is the spectrum of HS, the spectrum of LS consists of the
eigenvalue differences {Ei−Ej}. In particular, 0 is an eigenvalue whose
multiplicity is at least equal to the dimension of HS. Let (Hk, pk, Wk) be
the GNS-representation of Ok associated to wk and let Lk be the corre-
sponding Liouvillean. We assume that the reservoirs are sufficiently ergodic
so that Lk has a simple eigenvalue zero, the rest of its spectrum being
purely absolutely continuous and filling the entire real line. The GNS-
representation (Hw, pw, Ww) associated to a state w ¥NS is obtained by
taking tensor products of the GNS-representations of individual subsys-
tems. In particular,

Hw=HS éH1 é · · · éHM.

The corresponding Liouvillean is

L=LS+L1+·· ·+LM.
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Fig. 3. The spectrum of the Liouvillean L.

The eigenvalues of L coincide with the eigenvalues of LS and the rest of its
spectrum is purely absolutely continuous and covers the real line, see
Fig. 3.

The standard Liouvillean for the locally perturbed dynamics ylV is

Ll=L+lV−lJVJ.

If the temperatures of the reservoirs are different, then one expects
that for small non-zero l all the eigenvalues of L turn into resonances and
that the spectrum of Ll is purely absolutely continuous (see Fig. 4). This
implies that in non-equilibrium situations there is no w-normal, yV-in-
variant state. In fact, by Theorem 3.3, any NESS is purely singular. To
prove the above spectral results in concrete models one uses either complex
deformation techniques or Mourre theory, see ref. 27 for a general descrip-
tion of these methods.

If the temperatures of all the reservoirs are equal, 0 remains an eigen-
value of Ll with an eigenvector corresponding to the perturbed KMS
state wlV. Apart from this simple eigenvalue, the spectrum of Ll is expected
to be purely absolutely continuous, all the other eigenvalues of L turning
into complex resonances, see Fig. 5. This yields that, in thermal equilib-
rium, the combined system enjoys strong ergodic properties and in particu-
lar, has the property of return to equilibrium. See refs. 15 and 27 and the
next section for application of this strategy to concrete models.

In the non-equilibrium case the above argument shows that, for small
non-zero coupling, there is no normal NESS. To study singular NESS one
uses the C-Liouvillean defined by

Ll,.=L+lV−lJD
1
2VD−

1
2J, (43)

where D and J are the modular operator and conjugation of the unper-
turbed system. For sufficiently regular V, the operator Ll,. is well-defined
and closed. It is not self-adjoint and satisfies Ll,.Ww=0. The expected
spectral picture is now more delicate. Roughly, there is a Banach space B,

Fig. 4. The spectrum and resonances of Ll far from equilibrium.
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Fig. 5. The spectrum and resonances of Ll near equilibrium.

densely and continuously embedded in Hw, with the following property.
For all F ¥B, the matrix elements

(F, (z−Ll,.)−1 F), (44)

originally defined for large Im z > 0, have an analytic continuation to the
entire half-plane Im z > 0, and a meromorphic continuation across the real
axis to a second Riemann sheet. The only singularity on the real axis is a
simple pole at 0. The residue at this pole is given by (F, Ww)(Wl, F), where
Wl ¥Bg is a ‘‘resonance eigenvector’’ of Lg

l,.. For a norm-dense subset
A … O such that pw(A) Ww …B, the formula

w+l (A)=(Wl, pw(A) Ww),

defines the unique NESS of the perturbed system. Moreover, Wl and hence
w+l will have convergent expansions in powers of l.

For details and additional information concerning the above heuristic
description of spectral theory of NESS we refer the reader to ref. 2. In the
next section we describe a non-trivial model to which the above spectral
approach can be effectively applied.

5.3. An Example

In this section we consider a concrete model S+R1+·· ·+RM, where
the reservoirs are identical free Fermi gases. For concreteness, we assume
that the Hilbert space of a single fermion (in momentum representation) is
H=L2(R3, dp) and that its Hamiltonian is the operator of multiplication
by w(p)=|p|2/2m. Denote by jk(f) — ak(f)+a

g
k (f) the field operator

of Rk. The coupling Vk is given by

Vk=Qk é jk(ak),

where ak ¥H is a form-factor and Qk=Q
g
k ¥ OS. The total perturbation is

lV=l C
k
Vk,

where l is a coupling constant.
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To our knowledge, the dynamical system (O, ylV) was first studied by
Davies. (51) Davies investigated the van Hove weak coupling limit l a 0,
t ‘. with t̄ — l2t=O(1). This limit yields information in the first non-
trivial order of perturbation theory. The paper (51) was followed by a sub-
stantial body of literature concerning dynamics of open quantum systems
in the van Hove limit (for references and additional information see
ref. 52). In particular, the non-equilibrium thermodynamics in the van
Hove limit have been studied in detail in ref. 42, while the linear response
theory was developed in ref. 53.

The tools to study the dynamical system (O, ylV) for finite small l have
been developed only recently. In the case where all the reservoirs have the
same temperature, it has been shown in ref. 15 that the system enjoys
strong ergodic properties. In fact, the system studied in ref. 15 differs from
the one considered here by the bosonic nature of the reservoir. However
the techniques extend immediately to the fermionic case (see also refs. 26–28
for additional developments). The non-equilibrium case has been con-
sidered in ref. 2, using the spectral approach outlined in the previous
section. In the rest of this section, we briefly summarize the results of ref. 2.
For reasons of space, we will not specify here all the technical conditions
we need—the interested reader may consult ref. 2 for precise statements
and additional information.

We need two assumptions on the model. The first one is a non-degen-
eracy condition which ensures the uniqueness of the NESS.

(ND) The commutant {HS, Q1,..., QM} − in OS is trivial, namely
consists only of multiples of the identity. Moreover

F
.

−.
e−it(Em −En) wk(jk(ak) y tk(jk(ak))) dt ] 0, (45)

for Em, En ¥ s(HS).

Note that if X ¥ {HS, Q1,..., QM} −, then y tV(X)=X. Thus, the non-
triviality of the above commutant would lead to an artificial multiplicity of
NESS. Relations (45) ensure that the reservoirs induces transitions between
eigenstates of the small system.

The second assumption we need is of a more technical nature. It
requires the form-factors ak to be analytic in a suitable sense. This condi-
tion allows us to use a complex deformation technique to investigate the
analytic structure of the resolvent (44). It is possible that some of the tech-
nical developments in refs. 26 and 27 can be used to relax this condition.
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Fix an initial state w ¥NS and assume that not all bk are the same.
The main results of ref. 2 are summarized as follows: there exists a constant
L > 0 such that, for 0 < |l| < L, the following holds:

(1) S+lV(w) consists of a unique purely singular NESS w+lV. More-
over, for all g ¥Nw and A ¥ O,

lim
tQ.

g p y tlV(A)=w+lV(A). (46)

(2) The limit (46) is exponentially fast in the following sense. There
exist c(l) > 0, a norm-dense set of states N0 …Nw and a norm-dense f-sub-
algebra O0 … O such that, for g ¥N0 and A ¥ O0,

|g p y tlV(A)−w+lV(A)| [ CA, g, l e−c(l) t. (47)

Moreover, c(l)=c0l
2+O(l4) as l Q 0, where c0 > 0 is a computable con-

stant. In fact, − c(l) is equal to the imaginary part of the non-zero reso-
nance of the operator Ll,. closest to the real axis.

(3) Fk, F̃k, sV — dw0 (V) ¥ O0. Hence, Proposition 4.6 applies and gives

Ep(w+lV) > 0.

(4) There exist operators KS, k: OS Q OS, completely determined by
the second order perturbation theory (Fermi Golden Rule) of the resonan-
ces of Ll,. and such that KS —;k KS, k is precisely the generator of the
Markovian dynamics in the van Hove limit. Namely, for any AS ¥ OS and
any initial state w=wS é w1 é · · · é wM ¥NS we have

lim
lQ 0

w p y−t̄/l
2
p y t̄/l

2

lV (AS é 1R)=wS(e−t̄KSAS).

(5) For A ¥ O0, the function l W w+lV(A) is analytic for |l| < L. More
precisely, there exist linear functionals w+k : O0 Q C such that, for A ¥ O0,

w+lV(A)=C
k \ 0

lkw+k (A). (48)

The first term w+0 belongs to NS and hence has the form

w+0=wS, eq é w1 é · · · é wM. (49)

The state wS, eq is yS-invariant. It is a solution of the equation
Kg

S(wS, eq)=0. The non-degeneracy condition (ND) ensures that scalar
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multiples of the density matrix wS, eq are the only solution of this equation.
Although the formulas for the higher order terms in Eq. (48) become
quickly very complicated, in principle it is possible to compute all terms of
this expansion.

The proofs of (1)–(5) are based on the spectral analysis of the
C-Liouvillean Ll,. and follow the strategy described in Section 3.3.2. The
necessary modular structures needed to compute the C-Liouvillean are
described in Sections 2.3.1 and 2.3.2. The technical analysis is based on the
complex deformation technique previously developed in refs. 15 and 54.
Condition (ND) is related to the ergodic properties of the Markovian
semigroup e−tKs (see refs. 52, 55–57).

The results (3)–(5) allow to compute heat fluxes and entropy produc-
tion perturbatively. Since w+0 is invariant under the unperturbed dynamics,
we have w+0 (slV)=w+0 (Fk)=0. Hence,

Ep(w+l )=l2w+1 (dw0 (V))+l3w+2 (dw0 (V))+· · · ,

w+l (Fk)=l2w+1 (dk(V))+l3w+2 (dk(V))+· · · .

Of particular importance are the l2-contributions (we will call them the
Fermi Golden Rule terms). They can be used to give a perturbative proof
of the strict positivity of the entropy production, as we will describe below.
With

Ep=w+1 (dw0 (V)),

F̄k=w+1 (dk(V)),

we can write

Ep=−C
k

bkF̄k.

From Eqs. (38) and (40) it easily follows that

F̄k=wS, eq(KS, k(HS)).

The operators KS, k can be explicitly computed and a somewhat long
computation shows that, as long as the bk are not all identical, one has

Ep > 0.

This gives another proof of the strict positivity of the entropy production
for small l, which has the advantage of providing a concrete estimate.
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Some of the principles of phenomenological thermodynamics hold for
the state wS, eq. Of particular interest are the Onsager reciprocity relations.
For the proof of these relations and additional discussion we refer the
reader to ref. 42.
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